Prozess- und Anlagendesign in der Biotechnologie

Dirk Holtmann

Fach- und Modulübersicht

Fach	Modul	Koordinator	LP
Kernkompetenzen	Prozess und Anlagendesign in der Biotechnologie	Holtmann	6
2 Pflichtmodule	Thermodynamik für Bioingenieurwesen	Enders, Zeiner	6
Überfachliche	Wissenschaftliches Arbeiten (z. B. Journal Club)	Holtmann, Grünberger	2
Qualifikationen	Kursangebot des Forum, House of Competence oder Sprache	enzentrum	2
Rechnergestützte Methoden Verfahrenstechnik	In den Bereichen <u>Rechnergestützte Methoden</u> und <u>Verfahrenstechnik</u> können je 6 – 16 LP gewählt werden, in Summe 22 LP. Werden 22 LP aufgrund des LP-Umfangs der einzelnen Module nicht genau erreicht, dürfen die 22 LP durch die Wahl eines Moduls überschritten werden.		
Vertiefung	Es können <u>zwei bis vier Vertiefungen</u> gewählt werden mit einem LP-Umfang von je 10 – 20 LP, in Summe 40 LP. Werden 40 LP aufgrund des LP-Umfangs der einzelnen Module nicht genau erreicht, dürfen die 40 LP durch die Wahl <u>eines</u> Moduls überschritten werden.		
Berufspraktikum	rufspraktikum 12 Wochen Berufspraktikum (Industrie) oder Forschungspraktikum (KIT, andere Forschungseinrichtung). Das Forschungspraktikum kann am KIT entweder als Blockpraktikum oder auch Semesterbegleitend in Teilzeit durchgeführt werden.		
Masterarbeit			30

Vertiefungsfächer

Studierende wählen aus dieser Zusammenstellung zwei bis vier Vertiefungen aus. Jede Vertiefung besteht aus Modulen im Umfang von 10 – 20 LP (ECTS).

Es können also

- zwei Vertiefungen im Umfang von je 20 LP,
- drei Vertiefungen im Umgang von insgesamt 40 LP (z. B. 14 LP + 14 LP + 12 LP),
- vier Vertiefungen im Umfang von je 10 LP oder
- Kombinationen, bei welchen aufgrund des Umfangs der einzelnen Module in Summe etwas mehr als 40 LP erreicht werden (z. B. 16 LP + 14 LP + 12 LP),

gewählt werden.

Vertiefung: Neue Bioproduktionssysteme und Elektrobiotechnologie (hier nur BIW)

NEUE BIOPRODUKTIONSSYSTEME - ELEKTROBIOTECHNOLOGIE

New Bio-Production Systems - Electro-Biotechnology

Prof. Dr.-Ing. Dirk Holtmann

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Elektrobiotechnologie (Pflicht)	Holtmann	WS	2 + 1	6
2	C1-Biotechnologie	Neumann	WS	2+1	6
3	Molekularbiologie und Genetik	Kämper, Requena- Sanchez	WS	4+0	5
4	Elektrochemie	Bresser et al.	SS	2+1	3
5	Electrocatalysis	Röse	SS	3 + 1	6
6	Batteries, Fuel Cells and Electrolysis	Krewer	WS	2 + 2	6

Elektrobiotechnologie (Vertiefung: Neue Bioproduktionssysteme und Elektrobiotechnologie)

4.31 Modul: Elektrobiotechnologie [M-CIWVT-106518]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Vertiefung: Neue Bioproduktionssysteme - Elektrobiotechnologie

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 LP	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	5	2

Pflichtbestandteile	Pflichtbestandteile				
T-CIWVT-113148	T-CIWVT-113148 Elektrobiotechnologie 4 LP Holtmann				
T-CIWVT-113829	Elektrobiotechnologie Seminar	2 LP	Holtmann		

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus zwei Teilleistungen:

- Prüfungsvorleistung/ Prüfungsleistung anderer Art: Benoteter Vortrag mit einer Dauer von ca. 10 Minuten im Rahmen des Seminars;
- Beim Seminar besteht Anwesenheitspflicht bei mindestens 80 % der Termine.
- · Mündliche Prüfung mit einer Dauer von ca. 20 Minuten.

Voraussetzungen

Die erfolgreiche Teilnahme an dem Seminar ist Voraussetzung für die Teilnahme an der mündlichen Prüfung.

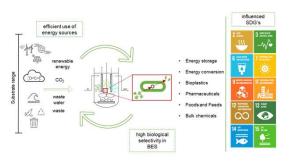
Elektrobiotechnologie (Vertiefung: Neue Bioproduktionssysteme und Elektrobiotechnologie)

Elektrobiotechnologie (Vertiefung: Neue Bioproduktionssysteme und Elektrobiotechnologie)

Definitionen und Grundbegriffe

Komponenten eines Reaktors, Elektrolyte, wichtige Gesetzmäßigkeiten

Grundlagen der Bioverfahrenstechnik


Mikrobielle Diversität, Wachstum von Zellen, Produktbildung, Ausbeuten, Enzymkinetik

Grundlagen der technischen Elektrochemie

• Elektrochemische Thermodynamik und Kinetik, Transportprozesse in der Elektrochemie, Elektrochemische Reaktionsund Verfahrenstechnik, Mess-Methoden

Elektrobiotechnologische Verfahren

 Biosensoren, Elektrobiotechnologische Verfahren in der "Molekularbiologie", Bio-Brennstoffzellen, Mikrobielle Elektrolysen, Mikrobielle Elektrosynthesen, Elektroenzymatische Syntheseverfahren, Bio-Elektrochemische Sanierungsverfahren, Elektrochemisches Bio-Mining, Elektrochemische Verfahren in der Aufarbeitung von Bio-Produkten

Vertiefung: Industrielle Biotechnologie

INDUSTRIELLE BIOTECHNOLOGIE

(Industrial Biotechnology)

Prof. Dr.-Ing. Alexander Grünberger; Prof. Dr.-Ing. Dirk Holtmann

Modul	Modul-Name / Titel der LV im Modul	Dozent	WS/ SS	V+Ü	LP
1	Anlagen- und Systemdesign (Pflicht)	Holtmann, Grünberger	WS/ SS	3 P	6
2	Bioprocess Scale-Up	Grünberger	WS	2 + 1	6
3	Industrielle Bioprozesse	Kopf	WS	2+0	4
4	Industrielle Biokatalyse	Rudat	SS	2 + 0	4
5	Kommerzielle Biotechnologie	Kindervater et al.	SS	2+0	4
6	Bioreaktorentwicklung	Holtmann, Grünberger	SS	2 P	4

Anlagen- und Systemdesign (Vertiefung: Industrielle Biotechnologie)

4.5 Modul: Anlagen- und Systemdesign [M-CIWVT-107402]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Vertiefung: Industrielle Biotechnologie

Leistungspunkte 6 LP

Notenskala Zehntelnoten Turnus Jedes Semester Dauer 1 Semester Sprache Deutsch

Level 4 Version 1

Pflichtbestandteile			
T-CIWVT-114537	Anlagen- und Systemdesign	6 LP	Grünberger, Holtmann

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistng anderer Art:

Portfolio (Präsentation, schriftliche Ausarbeitung, Programmcode). Details zur genauen Ausgestaltung werden jeweils zu Veranstaltungsbeginn bekannt gegeben.

Voraussetzungen

Keine.

Anlagen- und Systemdesign (Vertiefung: Industrielle Biotechnologie)

Die Studierenden sind in der Lage:

- eine vorgegebene Aufgabenstellung zu erfassen und in der Gruppe zu bearbeiten
- auch komplexe Aufgabenstellungen aus der industriellen Biotechnologie im Rahmen der Interpretation externer Beispiele zu verstehen und auf das eigene Projekt zu übertragen.
- mit Literaturdatenbanken zu arbeiten, aktuelle wissenschaftliche Fachliteratur zu beschaffen, kritisch zu interpretieren und in die eigene Arbeit einfließen zu lassen und Lösungsvorschläge zu entwickeln
- Grundlagen des Projektmanagements zu erfassen, anzuwenden und umzusetzen
- aus der Kenntnis verschiedener Softwareprogramme, das für die Lösung der Aufgabenstellung optimale auszuwählen und einzusetzen
- multidisziplinär zu denken und zu handeln
- ein Projekt in der Gruppe zu organisieren und in einem vorgegebenen Zeitrahmen umzusetzen Inhalt

Anlagen- und Systemdesign (Vertiefung: Industrielle Biotechnologie)

Die Themenvergabe erfolgt durch jeweils durch den Dozenten

- je nach Aufgabenstellung werden biotechnologische Prozesse oder Anlagen in Projektarbeit entworfen, gestaltet, ausgelegt und verglichen
- mögliche Methoden zur wissenschaftlich fundierten technischen Lösung der Aufgabenstellung werden seminaristisch erarbeitet
- darauf aufbauend wird die weitere Projektvorgehensweise definiert und im Rahmen eines Projektmanagements durchgeführt
- je nach Aufgabenstellung kommen Darstellungs- und Simulationsprogramme zum Einsatz (z.B. MatLab, SuperProDesigner)

Themenbeispiele:

- Vergleich hetero- und autotropher Produktionsverfahren von Terpenen
- Konzept für die Rückgewinnung von Lösungsmitteln in der Enzymkatalyse
- Integration einer Elektrodialyse in einen Produktionsprozess
- Regelungskonzepte f
 ür Repeated-fed-Batch-Kultivierungen
- Vergleich von Nebenströmen als Substrate zur Produktion von SCP
- Modellierung von Mischkulturen

Anlagen- und Systemdesign (Vertiefung: Industrielle Biotechnologie)

4.5 Modul: Anlagen- und Systemdesign [M-CIWVT-107402]

Verantwortung: Prof. Dr.-Ing. Alexander Grünberger

Prof. Dr.-Ing. Dirk Holtmann

Forschungspraktikum - Intensification of Bio-Processes

4.41 Modul: Forschungspraktikum [M-CIWVT-107423]

Verantwortung: Dr.-Ing. Barbara Freudig

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Berufspraktikum

Leistungspunkte
12 LPNotenskala
best./nicht best.Turnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
4Version
1

Wahlinformationen

Bitte nehmen Sie mit dem gewünschten Institut Kontakt auf, bevor Sie die entsprechende Teilleistung auswählen.

Forschungspraktikum (Wahl: max. 12 LP)				
T-CIWVT-114575	Biopharmaceutical Process Engineering	12 LP	Hubbuch	
T-CIWVT-114613	Datengetriebene Methoden im Bioingenieurwesen: Modellierung und autonomes Experimentieren	12 LP	Franzreb	
T-CIWVT-114612	Gasfermentation	12 LP	Dahmen	
T-CIWVT-114574	Intensification of Bio-Processes	12 LP	Holtmann	
T-CIWVT-114577	Lebensmittelverfahrenstechnik	12 LP	van der Schaaf	
T-CIWVT-114576	Multiscale Bioengineering	12 LP	Grünberger	
T-CIWVT-114614	Wassertechnologie	12 LP	Horn	

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung.

Qualifikationsziele

Die angehenden Ingenieurinnen und Ingenieure haben einen Einblick in die Forschung eines Instituts bekommen und eigenständig ein Projekt bearbeitet. Bisher erlernte Fähigkeiten können sie auf Problemstellungen in der aktuellen Forschung anwenden.

Anmerkungen

Forschungspraktikum und Masterarbeit sind thematisch klar voneinander abzugrenzen. Es wird empfohlen, die Forschungspraktikum und Masterarbeit in unterschiedlichen Arbeitsgruppen zu absolvieren.

Arbeitsaufwand

360 h. Das Praktikum kann in Vollzeit (12 Wochen) oder semesterbegleitend in Teilzeit durchgeführt werden.

Forschungspraktikum - Intensification of Bio-Processes

5.62 Teilleistung: Intensification of Bio-Processes [T-CIWVT-114574]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-107423 - Forschungspraktikum

Teilleistungsart Studienleistung praktisch Leistungspunkte 12 LP Notenskala best./nicht best. Turnus Jedes Semester Version

Erfolgskontrolle(n)

Erfolgskontrolle ist eine unbenotete Studienleistung: Präsentation der Ergebnisse.

Voraussetzungen

Keine

Anmerkungen

Das Thema der Masterarbeit ist klar von dem Thema des Forschungsprojekts abzugrenzen.

Journal Club (Wissenschaftliches Arbeiten)

4.52 Modul: Journal Club - Neue Bioproduktionssysteme [M-ClWVT-106526]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: Überfachliche Qualifikationen

Leistungspunkte

4 LP

Notenskala Zehntelnoten

Turnus Jedes Sommersemester Dauer 1 Semester Sprache Deutsch/ Englisch

Level 5 Version 1

Pflichtbestandteile			
T-CIWVT-113149	Journal Club - Neue Bioproduktionssysteme	4 LP	Holtmann

Erfolgskontrolle(n)

Erfolgskontrolle ist eine Prüfungsleistung anderer Art:

Bewertet werden zwei mündliche Präsentationen, wobei eine Präsentation auf Deutsch und eine Präsentation auf Englisch zu halten ist. Die aktive Teilnahme am Seminar (Anwesenheit bei mindestens 80 % der Termine) ist Voraussetzung für das Bestehen.

Journal Club (Wissenschaftliches Arbeiten)

Fachlich-inhaltliche und methodische Kompetenzen

Die Studierenden sind in der Lage:

- selbständig Fachliteratur zu recherchieren und diese kritisch zu analysieren
- wissenschaftliche Inhalte in einen größeren Kontext einzuordnen
- Inhalte zu einem vorgegebenen und einem freigewählten Thema wissenschaftlich zusammenzufassen

Sozial- und Selbstkompetenz

Die Studierenden sind in der Lage:

- wissenschaftliche Themen nach eigener Recherche m\u00fcndlich in deutscher und englischer Sprache zu pr\u00e4sentieren und
- sich den Fragen des Auditoriums zu stellen
- komplexe wissenschaftliche Inhalte zusammenzufassen
- als Teil einer Gruppe aktiv und wertschätzend zu diskutieren

Bioreaktorentwicklung

5.18 Teilleistung: Bioreaktorentwicklung [T-CIWVT-113315]

Verantwortung: Prof. Dr.-Ing. Dirk Holtmann

Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik

Bestandteil von: M-CIWVT-106595 - Bioreaktorentwicklung

Teilleistungsart Leistungspunkte Prüfungsleistung anderer Art LP Notenskala Drittelnoten

Lehrveranstaltungen						
SS 2025	2210020	Teamprojekt "99€-Bioreaktor": Entwicklung eines innovativen Bioreaktorkonzeptes	2 SWS	Projekt (PRO) / 🗣	Grünberger, Holtmann	
Prüfungsv	Prüfungsveranstaltungen					
SS 2025	7210020-BRE	Bioreaktorentwicklung	oreaktorentwicklung			

Version

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, X Abgesagt

Voraussetzungen

Keine

Bioreaktorentwicklung

Tüfteln, Bauen, Kultivieren! – Unter diesem Motto findet jedes Jahr der Wettbewerb um den besten 99€-Bioreaktor an der Professur für Bioverfahrenstechnik der Technischen Universität Dresden unter der Leitung des Vereins "Netzwerk Bioverfahrenstechnik Dresden e.V." statt. Und dies bereits seit 2014! Und damit es nicht langweilig wird, gibt in jedem Jahr eine neue Challenge: Angefangen von anaeroben Batchprozessen für die Ethanolproduktion über Fed-batch Kultivierungen zur roten Farbstoffherstellung bis hin zur Anzucht von extremophiler Organismen.

Kreative Teams, bestehend aus drei bis vier Studierenden und einer/s Doktorand*in bzw. Postdocs, aus ganz Deutschland stellen sich der Herausforderung und bauten mit nur maximal 99,- € einen funktionstüchtigen Bioreaktor unter den vorgegebenen Rahmenbedingungen, der im anschließenden Wettbewerb bestehen muss. Neben jeder Menge Spaß und tüftlerischen Highlights, gibt es für die Besten der Besten auch immer einen Preis!

